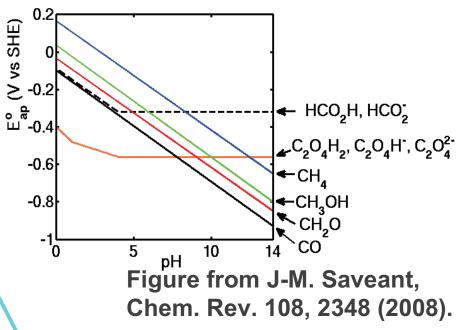


Electrochemical Energy Storage Devices Based on Carbon-Dioxide as Electroactive Species

Károly Németh, XSD/APS-Argonne

WHY CONSIDERING CO2 FOR BATTERY DESIGN?

- Highly efficient catalysts are available for both reduction and oxidation of CO2 with moderate overpotentials.
- CO2 is easy to compress to supercritical or liquid state.
- Supercritical/liquid CO2 is excellent "green" solvent.
- Ionic liquids based on reduced forms of CO2.
- Ionic liquids have anomalous melting point depression in CO2 atmosphere.


Nenad-group presentation, Sept. 26, 2011.

CO, electrochemistries of primary consideration:

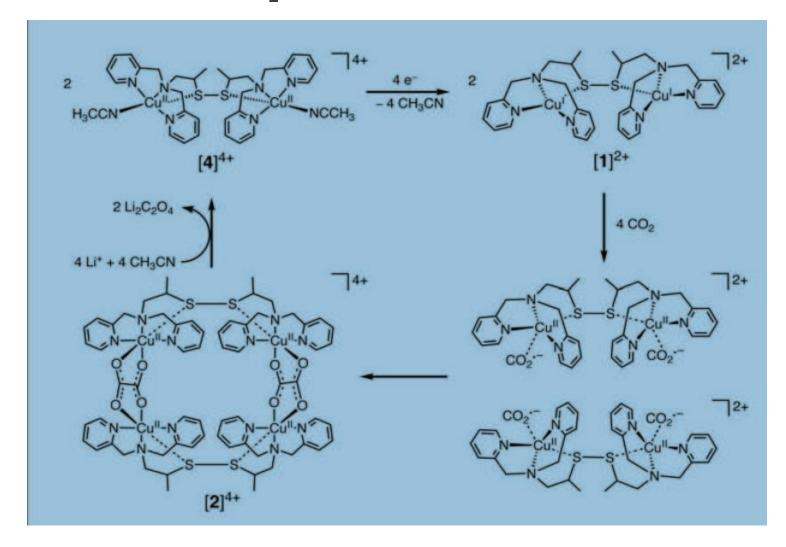
In aprotic medium:

$$2CO_{2} + 2e^{-} \rightarrow C_{2}O_{4}^{2-}$$

$$2CO_2 + 2e^- \rightarrow CO_3^{2-} + CO$$

Robust, easy to back-oxidize.

In protic medium:


$$CO_2 + H_2O + 2e^- \rightarrow HCOO^- + OH^-$$

$$4CO_2 + 2H_2O + 4e^- \rightarrow 2HCO_3 + 2HCOO^-$$

Approximately pH neutral.

Catalyst for CO₂ reduction to oxalate:

100% oxalate yield, at -0.03V wrt SHE in acetonitryl.

Raja Angamuthu, et al. Science 327, 313 (2010).

Effect of electrolyte on CO2 reduction:

TABLE III						
Run No.	Catholyte and anolyte ¹	Applied voltage (volts)	Maximum temp. (° C.)	Run time (hr.)	Current density (ma./cm.²)	Coulombic yield of (C ₂ O ₄ =), (percent)
6	{0.3 M TEPC/DMF} {0.3 NaOH/H ₂ O}	15		14	5, i	71. 8
7	{0.3 M TEPC/DMF} 0.3 M NaHCO ₃ /H ₂₀ }	15		12	3, 9	93. 8
8	0.3 M TEPC/DMF	15	33	6	6. 0	68. 7
9	O.3 M TEPC/DMF	25	50	51/2	17. 7	72, 2
10	0.3 M TEPC/DMF Sat'd NaCl/H ₂ O	35	61	11/2	19, 5	87. 6
11	0.3 M TEPC/DMF Sat'd NaCl/H ₂ O	35	76, 5	21/2	30. 6	97.8
12	0.2 M TEBr/DMF Sat'd NaCl/H ₂ O	35	59 · ·	. 2	15, 0	77.9.
13	0.3 M TEPC/DMA Sat'd NaCl/H ₂ O	35	74	2	25, 8	83, 5
14	0.3 M TEPC/DMSO Sat'd NaCl/H ₂ O	35	63.5	2	20.8	87. 5
¹ See footnote at the end of Table II.						

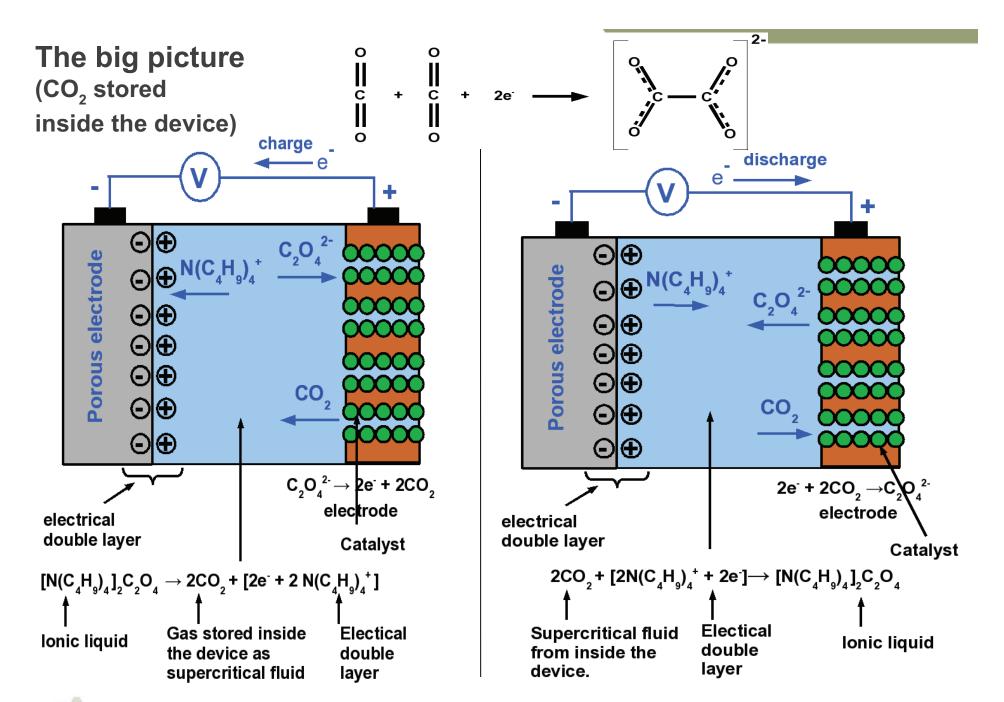
From US Patent 3720591 (1973)

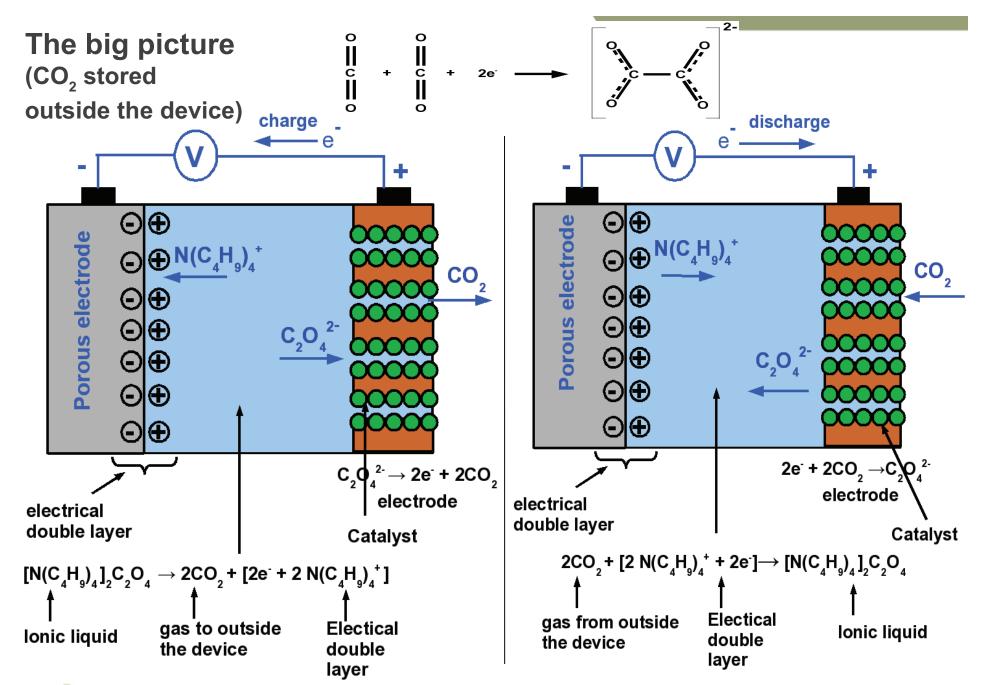
Nenad-group presentation, Sept. 26, 2011.

Very high oxalate yield
Due to the use of
Tetraethyl-ammonium
Perclorate electrolyte in DMF.

Electrodes for oxalate oxidation to CO₂:

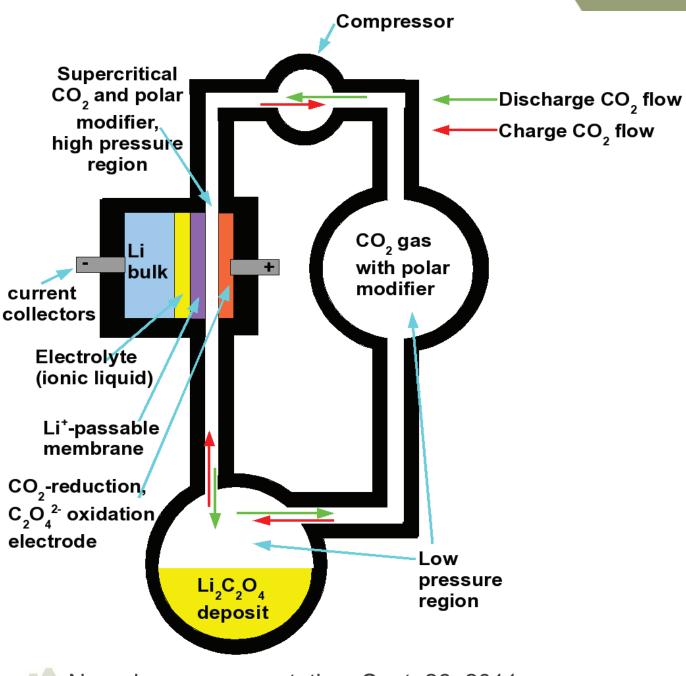
- 1. Nobel metals.
- 2. Graphite
- 3. Highly boron doped diamond film
- 4. PbO2 (best for alkaline media).


etc.


Electrochemical Liquid-to-Fluid or Liquid-to-Gas conversion

Supercritical or gas-phase carbon dioxide ↔ an oxalate-ion containing ionic liquid.

The cation of the ionic liquid is stored in electrical double layer (supercapacitor) on the negative electrode in the charged state.



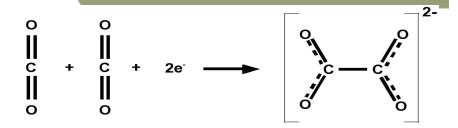
Nenad-group presentation, Sept. 26, FOR HIGH PRESSURE CONTAINER

9

Flow Battery based on CO_2 electrochemistry

Many different variants of electrochemical energy storage devices can be built on CO₂ electrochemistry:

A whole overlooked platform of energy storage devices!


For more variants, see our patent application:

K. Németh, G. Srajer, M. van Veenendaal: Electrochemical Energy Storage Device Based on Carbon Dioxide as Electroactive Species

http://www.freepatentsonline.com/y2010/0330435.html

Why using CO₂ instead of O₂?

1. CO₂ is less reactive than O₂: both disadvantage and advantage.

Disadvantage: in discharging: less voltage

Advantage: in recharging: instead of agressive O species environmentally

benign CO₂ is produced: does not "eat up" electrolyte and electrode.

- 2. Reduction of CO₂ to Oxalate (C₂O₄²- preferred discharge product of CO₂): catalyst are available with ~100% Faradaic yield and selectivity for oxalate at a potential near 0V wrt SHE (see e.g. "Electrocatalytic CO₂ Conversion to Oxalate by a Copper Complex", Raja Angamuthu, et al. Science 327, 313 (2010);)
- 3. Oxidation of Oxalate (C₂O₄²⁻ preferred discharge product of CO₂) during recharge is a well established process, goes with small overpotential and yields 100% CO₂. No desperate need for catalyst development for the recharge process.

Why using CO₂ instead of O₂?

- 4. CO2 is present in the air and can be collected very efficiently, thus it provides a potential fuel component available from the air.
 Besides O2, only CO2 is electrochemically useful from the air.
- 5. CO2 is uniquely well and easily compressable (supercritical point at ~70 bar and ~30 C). Supercritical CO2 has been known for long as an excellent green-chemistry solvent. CO2 can be both solvent of electrolyte and electroactive species.
- 6. CO_2 reduction product oxalate $(C_2O_4^{2-})$ can form ionic liquids with organic cations (e.g. quaternary ammonium and phosphonium cations).
- 7. A large number of ionic liquids have anomalous melting point depression in CO₂ atmosphere (Scurto AM, et.al, "Melting point depression of ionic liquids with CO₂: Phase equilibria", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH Volume: 47 Issue: 3 Pages: 493-501).

Why using CO₂ instead of O₂?

8. In the CO2-based devices there would be much simpler phase-interfaces, than in Li-O2 batteries, since there are no solid reaction products.

Summary:

CO₂ electrochemistry may be more advantageous than O₂ electrochemistry for building efficient, "green" and economic electrochemical energy storage devices.

